Electron-phonon scattering from green’s function transport combined with molecular dynamics: Applications to mobility predictions

Daniele Stradi

www.quantumwise.com
daniele.stradi@quantumwise.com
Ab-initio simulations using the Boltzmann transport equations (BTE) permit to obtain quantitative mobilities and resistivities of crystalline bulk materials both at zero and at finite-temperatures.
Ab-initio simulations using the Boltzmann transport equations (BTE) permit to obtain quantitative mobilities and resistivities of crystalline bulk materials both at zero and at finite-temperatures.

What if ...

- ... the system is large?
- ... we want to study an interface?
- ... the material is not crystalline?
- ... we want to include anharmonic effects?
Objective

Obtain mobilities and resistivities without the explicit evaluation of the electron-phonon coupling matrix.

Two general methods with increasing efficiency:

- **MD-Landauer method [1]**: Finite-temperature effects are accounted for by using molecular dynamics (MD).
- **STD-Landauer method**: Finite-temperature effects are accounted for by a special thermal displacement (STD).

Computational methods

- Electronic structure
 - ATK-DFT or ATK-DFTB
 - LCAO basis set: DZP or SG15-M
 - LDA or GGA-PBE xc-functionals

- Molecular dynamics and phonons
 - ATK-ForceField
 - EAM or Tersoff potentials
The electronic structure is calculated using the non-equilibrium Green’s function (NEGF) method [2] and a two-probe device set-up in which a central region is connected to two semi-infinite electrodes.

The electronic structure is calculated using the non-equilibrium Green’s function (NEGF) method [2] and a two-probe device set-up in which a central region is connected to two semi-infinite electrodes.

In the MD region with length L the atomic positions are evolved using MD simulations at finite temperature.

A number (10-50) of MD trajectories is equilibrated at a target temperature using a random Maxwell-Boltzmann distribution of initial velocities to create an ensemble of snapshots of the structure at that temperature.

A number (10-50) of MD trajectories is equilibrated at a target temperature using a random Maxwell-Boltzmann distribution of initial velocities to create an ensemble of snapshots of the structure at that temperature.

The electronic transmission is calculated for all the snapshots using the NEGF approach and the resulting transmission functions are averaged to obtain the finite-temperature transmission $\langle T \rangle$.

A number (10-50) of MD trajectories is equilibrated at a target temperature using a random Maxwell-Boltzmann distribution of initial velocities to create an ensemble of snapshots of the structure at that temperature.

The electronic transmission is calculated for all the snapshots using the NEGF approach and the resulting transmission functions are averaged to obtain the finite-temperature transmission $\langle T \rangle$.

The finite-temperature resistance is calculated from the finite-temperature conductance $\langle G \rangle$ obtained using the Landauer formula:

$$\langle R^{-1} \rangle = \langle G \rangle = \frac{2e^2}{h} \int \langle T \rangle \left(-\frac{\partial f}{\partial E} \right) dE$$
The finite-temperature resistance is calculated for increasingly longer lengths L of the MD region.
The finite-temperature resistance is calculated for increasingly longer lengths L of the MD region.

The 1D resistivity ρ_{1D} is obtained by a linear-regression of the R vs. L data using:

$$R(L) = R_c + \rho_{1D} \cdot L$$

MD-Landauer method [1]: Finite-temperature bulk resistivity

- The finite-temperature resistance is calculated for increasingly longer lengths L of the MD region.
- The 1D resistivity ρ_{1D} is obtained by a linear-regression of the R vs. L data using:

$$R(L) = R_c + \rho_{1D} \cdot L$$

- The bulk resistivity ρ_{Bulk} is obtained by multiplying ρ_{1D} for the cross-sectional area of the system A:

$$\rho_{\text{Bulk}} = \rho_{1D} \cdot A$$

MD-Landauer method [1]: Finite-temperature bulk resistivity

- The finite-temperature resistance is calculated for increasingly longer lengths L of the MD region.
- The 1D resistivity ρ_{1D} is obtained by a linear-regression of the R vs. L data using:

$$R(L) = R_c + \rho_{1D} \cdot L$$

- The bulk resistivity ρ_{Bulk} is obtained by multiplying ρ_{1D} for the cross-sectional area of the system A:

$$\rho_{\text{Bulk}} = \rho_{1D} \cdot A$$

- The electron mobility can be calculated from ρ_{Bulk} as:

$$\mu = \frac{1}{q n \rho_{\text{Bulk}}} = \frac{A}{q \tilde{n} \rho_{1D}}$$

$$\tilde{n} = \frac{A}{n} = \int_{E_g}^{\infty} f(E_g, E, T) D(E) dE$$

For bulk Si, the mobility calculated with the MD-Landauer method agrees with that obtained using the BTE and with that measured experimentally [2].

The MD-Landauer methods captures the reduced mobility in the 1D nanowire compared to the bulk.

For a number of systems, the mobilities calculated using the 1D method agree with those calculated using the BTE within a factor \(~2\).

The method is applicable to:
- Metallic systems
- Semiconducting systems
- 1D, 2D and 3D systems

MD-Landauer method [1]: Pros and cons

😊 **Pros:**
- Conceptually simple
- Mobilities and resistivities agree semi-quantitatively with BTE and experiments and trends are correctly reproduced
- Can be applied to complex geometries
- Includes anharmonic effects

👎 **Cons:**
- Requires extensive sample averaging
- Too time consuming for large device calculations

STD-Landauer method: Device set-up

Central region

Electrode

MD region

Electrode

L
Key idea: all temperature effects are accounted for by a single distorted atomic configuration based on a canonical average over all phonon modes [1].

In the STD (Special Thermal Displacement) region each κ-th atom is displaced by $\Delta r_{\kappa\alpha}$ along the Cartesian direction α according to:

$$
\Delta r_{\kappa\alpha} = (M_p/M_\kappa)^{1/2} \sum_{\nu} (-1)^{\nu-1} e^\nu r_{\kappa\alpha,\nu} \sigma^\nu_{\nu,T}
$$

$$
\sigma^\nu_{\nu,T} = (2n_{\nu,T} + 1) \ell^2_{\nu}
$$

For bulk Au, the mobility calculated at 300 K using the **STD-Landauer** method matches that calculated using the **MD-Landauer** method.
For bulk Au, the mobility calculated at 300 K using the **STD-Landauer** method matches that calculated using the **MD-Landauer** method.

Using the STD-Landauer method, fewer transmission calculations are performed, and the time-to-result (~time of Landauer transmission calculations) is reduced by one order of magnitude.

Comparison of STD-Landauer and MD-Landauer

<table>
<thead>
<tr>
<th></th>
<th>MD-Landauer</th>
<th>STD-Landauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr. of calculations</td>
<td>31</td>
<td>4</td>
</tr>
<tr>
<td>Time-to-result (h)</td>
<td>18.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

\[\rho_{\text{bulk, MD-Landauer}} = 3.28 \times 10^{12} \Omega \cdot m \]

\[\rho_{\text{bulk, STD-Landauer}} = 3.23 \times 10^{12} \Omega \cdot m \]
The $\Sigma 3$ twin boundary is related to the pristine $\langle 111 \rangle$-oriented system by a 60° rotation around the C vector.
The Σ3 twin boundary is related to the pristine (111)-oriented system by a 60° rotation around the C vector.

The specific resistivity γ_R of the twin grain boundary can be calculated from the resistance of the grain boundary $R_{\Sigma3}$ and that of the pristine system $R_{Pristine}$ [1]:

$$\gamma_R = \frac{(R_{\Sigma3} - R_{Pristine}) \cdot A}{N_{\Sigma3}}$$

The $\Sigma 3$ twin boundary is related to the pristine (111)-oriented system by a 60° rotation around the C vector.

The specific resistivity γ_R of the twin grain boundary can be calculated from the resistance of the grain boundary $R_{\Sigma 3}$ and that of the pristine system R_{Pristine} [1]:

$$\gamma_R = \frac{(R_{\Sigma 3} - R_{\text{Pristine}}) \cdot A}{N_{\Sigma 3}}$$

Including finite-temperature effects brings γ_R above the experimental value.

Conclusions

- The MD-Landauer and STD-Landauer methods allow for the calculation of mobilities and resistivities including electron-phonon coupling effects without explicitly evaluating the electron-phonon scattering matrix.
- The MD-Landauer approach is validated against mobility calculations using the Botzmann transport equations and describes well the temperature dependence of the mobility for a wide range of materials.
- The STD-Landauer approach gives results in close agreement with the MD-Landauer method at a fraction of the computational cost, and can be applied routinely to investigate the temperature dependence of the resistivity in complex systems.
Acknowledgements

People

QuantumWise A/S
Kurt Stokbro
Troels Markussen
Mattias Palsgaard
Haruhide Miyagi
Ulrik Grønbjerg Vej-Hansen

DTU Nanotech
Mads Brandbyge
Tue Gunst

Fundings

PRB accepted arXiv:1701.02883

Electron-phonon scattering from Green’s function transport combined with Molecular Dynamics: Applications to mobility predictions.

Troels Markussen,1 Mattias Palsgaard,1,2 Daniele Stradi,1 Tue Gunst,2 Mads Brandbyge,2 and Kurt Stokbro3

1QuantumWise A/S, Prøfbjerget 3, Postbox 4, DK-2180 Copenhagen, Denmark
2Department of Micro- and Nanotechnology (DTU Nanotech), Center for Nanostructured Graphene (CNG), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
3Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

(Dated: January 12, 2017)
Thank You!

Find us at the booth in the exhibition area!